1. Name the different part of the mass spectrum from the diagram below:



Chem XX Masterpiece



1. Name the different part of the mass spectrum from the diagram below:



Chem XX Masterpiece



2. How do you use the mass spectrum to calculate the relative mass ?

Chem XX Masterplece



2. How do you use the mass spectrum to calculate the relative mass ?

Find the intensity of each M/Z (or mr) from the graph you get from the mass spectrum and multiply it together. Intensity\*M/Z than you add any other intensities. Lastly you divide everything by 100







3. How do you find the Mr of the compound from this mass spectrum?



## Chem XX Masterplece

Believe it , Learnt it & Nailed it

3. How do you find the Mr of the compound from this mass spectrum?

## The last peak in the spectrum with the largest Mr but where there is M+ as M+2 would be for Carbon-13 if you have some carbon in your compound your testing.





Believe it , Learnt it & Nailed it

## 4. What are fragments and how are they created?



Chem MM Masterplece

Believe it , Learnt it & Nailed it

## 4. What are fragments and how are they created?

They are formed when the compound has been accelerated and can break at different places. (Think of a glass breaking, It breaks at different places). The pick with the largest relative abundance is the fragment which is most likely to happen during the acceleration.





Believe it , Learnt it & Nailed it